AMERICAS

DATASHEET

SMD • Power Top LEDs with

Lens EAPL3529OA0

Features

- PLCC-3 package.
- High flux output.
- High current capability.
- White package.
- Optical indicator.
- Ideal for backlight and light pipe application.
- Inter reflector.
- Wide viewing angle.
- Suitable for automatic placement equipment.
- Suitable for reflow and wave solder processes.
- Available on tape and reel (8mm Tape).
- Pb-free.
- The product itself will remain within RoHS compliant version.

Applications

- Indicator and backlight for audio and video equipment.
- Indicator and backlight in office and family equipment.
- Flat backlight for LCD's, switches and symbols.
- Light pipe application.
- General use.

Device Selection Guide

Chip Materials	Emitted Color	Resin Color
AlGalnP	Brilliant Orange	Diffused

Absolute Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}^{\circ} \mathrm{C}$)

Parameter	Symbol	Rating	Unit
Reverse Voltage	V_{R}	12	V
Forward Current	I_{F}	50	mA
Peak Forward Current (Duty 1/10 @1KHz)	$I_{\text {FP }}$	100	mA
Power Dissipation	Pd	140	mW
Junction Temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$
Operating Temperature	$\mathrm{T}_{\text {opr }}$	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	$-40 \sim+90$	${ }^{\circ} \mathrm{C}$
Thermal Resistance	Rth J-A	300	K/W
Thermal Resistance	Rth ${ }_{\text {J-S }}$	150	K/W
ESD	ESD Hвм $^{\text {l }}$	2000	V
(Classification acc. AEC Q101)	ESD ${ }_{\text {мм }}$	200	V
Soldering Temperature	$\mathrm{T}_{\text {sol }}$	Reflow Soldering: $260{ }^{\circ} \mathrm{C}$ for 10 sec . Hand Soldering : $350{ }^{\circ} \mathrm{C}$ for 3 sec .	

Electro-Optical Characteristics $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Luminous Intensity	Iv	5600	-----	18000	mcd	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$
Viewing Angle	$2 \theta_{1 / 2}$	-----	30	-----	deg	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$
Peak Wavelength	λp	-----	611	-----	nm	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$
Dominant Wavelength	$\lambda \mathrm{d}$	599	----	611	nm	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$
Spectrum Radiation Bandwidth	$\Delta \lambda$	-----	18	-----	nm	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$
Forward Voltage	V_{F}	1.8	----	2.8	V	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$
Reverse Current	I_{R}	-----	-----	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=12 \mathrm{~V}$

Note:

1. Tolerance of Luminous Intensity: $\pm 11 \%$
2. Tolerance of Dominant Wavelength: $\pm 1 \mathrm{~nm}$
3. Tolerance of Forward Voltage: $\pm 0.1 \mathrm{~V}$

Bin Range of Luminous Intensity

Bin Code	Min.	Max.	Unit	Condition
DB	5600	7100		
EA	7100	9000		
EB	9000	11200	14000	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$
FA	11200	14000	18000	
FB				

Note:
Tolerance of Luminous Intensity: $\pm 11 \%$

Bin Range of Dominant Wavelength

Bin Code	Min.	Max.	Unit	Condition
B5	599	602		
B6	602	605	nm	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$
B7	605	608		
B8	608	611		

Note:
Tolerance of Dominant Wavelength: $\pm 1 \mathrm{~nm}$

Typical Electro-Optical Characteristics Curves

Typical Curve of Spectral Distribution

Note: $V(\lambda)=$ Standard eye response curve; $I_{F}=50 \mathrm{~mA}$
Diagram Characteristics of Radiation

Forward Current vs. Forward Voltage ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Relative Luminous Intensity vs. Forward Current ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Forward Current (mA)

Dominant Wavelength vs. Forward Current ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Max. Permissible Forwarded Current $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right)$

Package Dimension

Polarity

for reflow solding (propose)

Note: Tolerances unless mentioned $\pm 0.1 \mathrm{~mm}$. Unit $=\mathrm{mm}$

Moisture Resistant Packing Materials

Label Explanation

- CPN: Customer's Product Number
- P/N: Product Number
- QTY: Packing Quantity
- CAT: Luminous Intensity Rank
- HUE: Dom. Wavelength Rank
- REF: Forward Voltage Rank
- LOT No: Lot Number

Reel Dimensions

Carrier Tape Dimensions: Loaded Quantity 500 pcs Per Reel

Polarity

Note: Tolerances unless mentioned $\pm 0.1 \mathrm{~mm}$. Unit $=\mathrm{mm}$

Moisture Resistant Packing Process

Note: Tolerances unless mentioned $\pm 0.1 \mathrm{~mm}$. Unit $=\mathrm{mm}$

Precautions for Use

1. Over-current-proof
1.1 Customer must apply resistors for protection, otherwise slight voltage shift will cause big current change (Burn out will happen).

Note: Reference: IPC/JEDEC J-STD-020D

2. Storage

2.1 Moisture proof bag should only be opened immediately prior to usage.
2.2 Environment should be less than $30^{\circ} \mathrm{C}$ and $60 \% \mathrm{RH}$ when moisture proof bag is opened.
2.3 After opening the package MSL Conditions stated on page 1 of this spec should not be exceeded.
2.4 If the moisture sensitivity card indicates higher than acceptable moisture, the component should be baked at min. 60deg +/-5deg for 24 hours.

3. Soldering Condition

3.1 Pb -free solder temperature profile
3.2 Reflow soldering should not be done more than two times.
3.3 When soldering, do not put stress on the LEDs during heating.
3.4 After soldering, do not warp the circuit board.
4. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than $350^{\circ} \mathrm{C}$ for 3 seconds within once in less than the soldering iron capacity 25 W . Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.
5. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

Application Restrictions

High reliability applications such as military/aerospace, automotive safety/security systems, and medical equipment may require different product. If you have any concerns, please contact Everlight before using this product in your application. This specification guarantees the quality and performance of the product as an individual component. Do not use this product beyond the specification described in this document.

