

DATASHEET

SMD ■ Technical Data Sheet EAHP5630GA0

Features

- Top view LED
- High luminous flux output
- High current capability
- · White package
- Wide viewing angle
- Pb-free
- The product itself will remain within RoHS compliant version.
- Precondition: Bases on JEDEC J-STD 020D Level 3

Descriptions

Due to the package design, EAHP5630GA0 has wide viewing angle This feature makes the LED ideal for light guide application.

Applications

- Decorative and Entertainment Lighting.
- Light pipe application
- Indicator and backlight in office and family equipment
- General use

Device Selection Guide

Chip Materials	Emitted Color	Resin Color
InGaN	Brilliant Green	Water Clear

Absolute Maximum Ratings (Ta=25 $^{\circ}$ C)

Parameter	Symbol	Rating	Unit	
Reverse Voltage	V_R	5	V	
Forward Current	I _F	150	mA	
Peak Forward Current (Duty 1/10 @1KHz)	I _{FP}	100	mA	
Power Dissipation	Pd	95	mW	
Junction Temperature	T _j	125	$^{\circ}\mathbb{C}$	
Operating Temperature	T_{opr}	-40 ~ +85	$^{\circ}\! \mathbb{C}$	
Storage Temperature	Tstg	-40 ~ +90	$^{\circ}\! \mathbb{C}$	
Thermal Desistance	Rth _{J-A}	150	K/W	
Thermal Resistance	Rth _{J-S}	100	K/W	
ESD	ESD _{HBM}	2000	V	
(Classification acc. AEC Q101)	ESD _{MM}	200	V	
Soldering Temperature	T _{sol}	Reflow Soldering : 260 $^{\circ}\mathbb{C}$ for 30 sec. Hand Soldering : 350 $^{\circ}\mathbb{C}$ for 3 sec.		

Electro-Optical Characteristics (Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Luminous Intensity	lv	5600		11200	mcd	I _F =150mA
Viewing Angle	2θ _{1/2}		120		deg	I _F =150mA
Peak Wavelength	λр		518		nm	I _F =150mA
Dominant Wavelength	λd	519		531	nm	I _F =150mA
Spectrum Radiation Bandwidth	Δλ		35		nm	I _F =150mA
Forward Voltage	V_{F}	2.7		3.7	V	I _F =150mA
Reverse Current	I _R			10	μΑ	V _R =5V

Note:

- 1. Tolerance of Luminous Intensity: ±11%
- 2. Tolerance of Dominant Wavelength: ±1nm
- 3. Tolerance of Forward Voltage: ±0.1V

Bin Range of Luminous Intensity

Bin Code	Min.	Max.	Unit	Condition
DB	5600	7100		
EA	7100	9000	mcd	$I_F = 150 \text{mA}$
EB	9000	11200		·

Note:

Tolerance of Luminous Intensity: ±11%

Bin Range of Dominant Wavelength

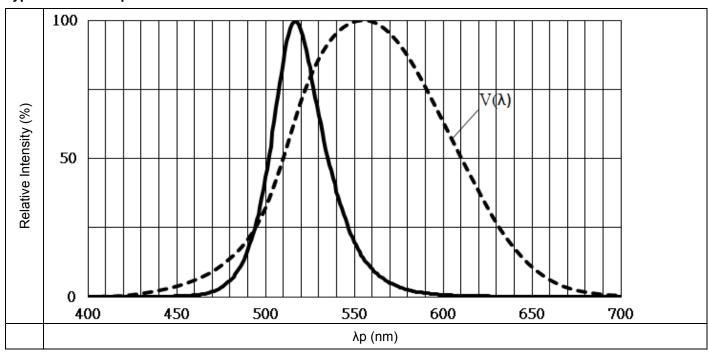
Bin Code	Min.	Max.	Unit	Condition
AA7 AA8 AA9	519	522		
AA8	522	525	nm	IF =150mA
AA9	525	528	nm	IF - 150IIIA
AA10	528	531		

Note:

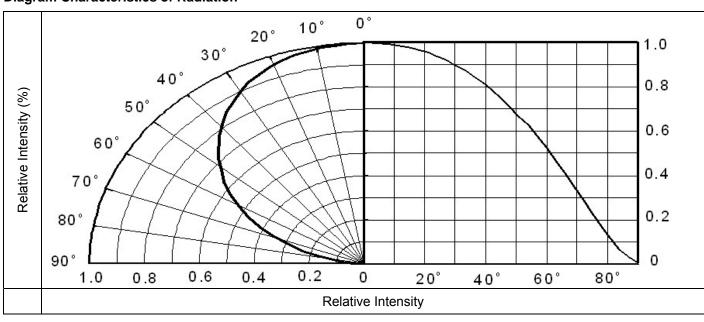
Tolerance of Dominant Wavelength: ±1nm

Bin Range of Forward Voltage

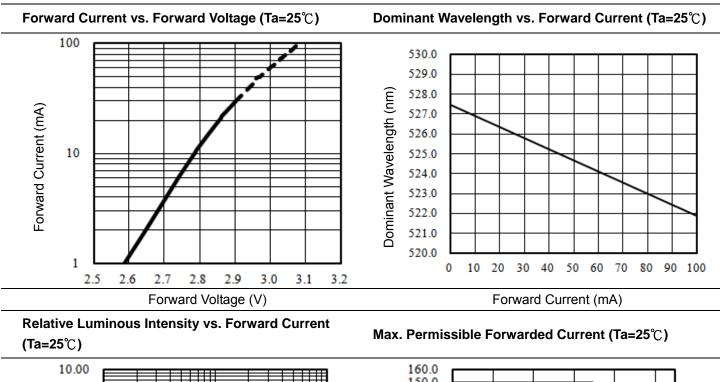
Bin Code	Min.	Max.	Unit	Condition
10	2.7	2.9		
11	2.9	3.1		
12	3.1	3.3	V	IF =150mA
13	3.3	3.5		
14	3.5	3.7		


Note:

Tolerance of Forward Voltage: ±0.1V


Typical Electro-Optical Characteristics Curves

Typical Curve of Spectral Distribution



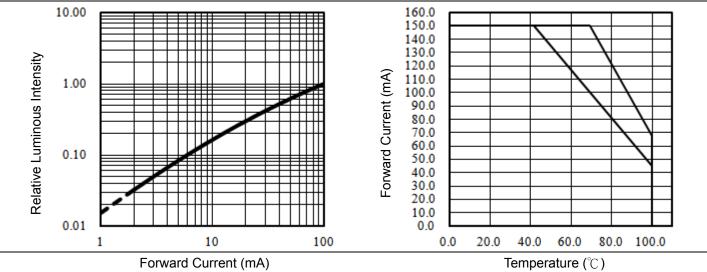
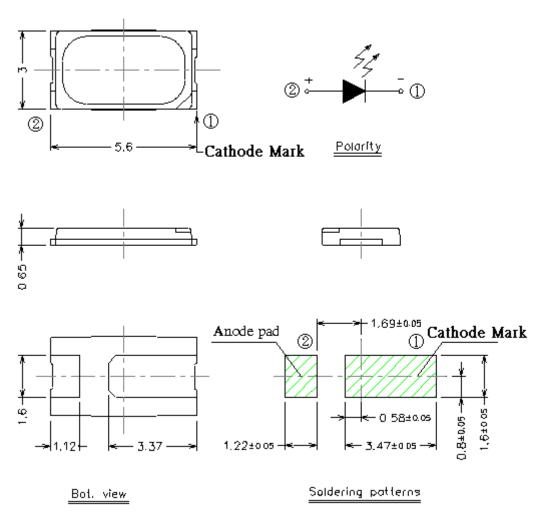
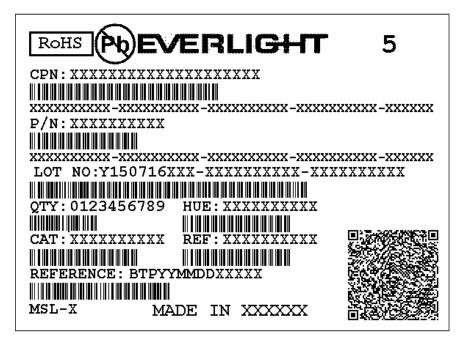

Note: $V(\lambda)$ =Standard eye response curve; I_F =150mA

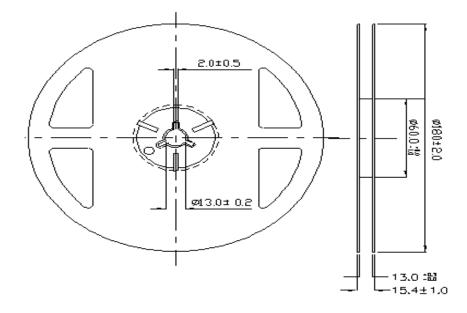
Diagram Characteristics of Radiation



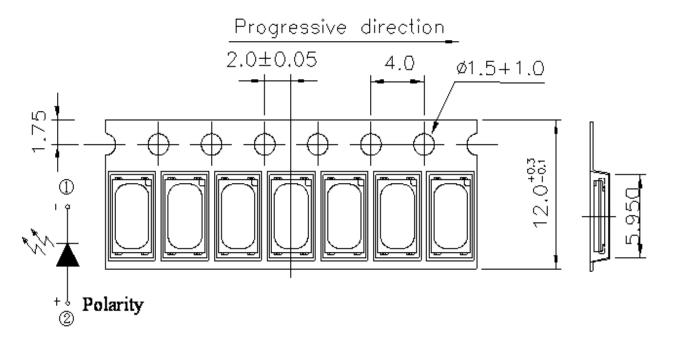
Package Dimension



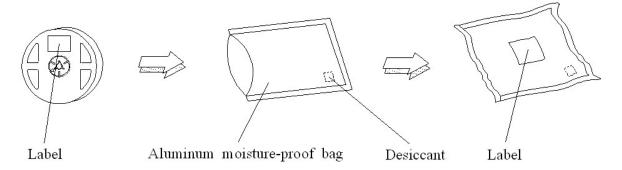
Note: Tolerances unless mentioned ±0.1mm. Unit = mm


Moisture Resistant Packing Materials

Label Explanation

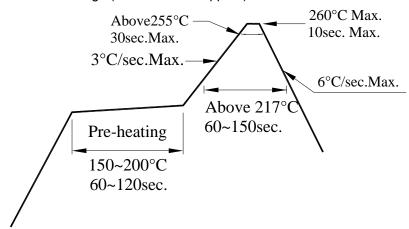

- CPN: Customer's Product Number
- P/N: Product Number
- · QTY: Packing Quantity
- · CAT: Luminous Intensity Rank
- HUE: Dom. Wavelength Rank
- REF: Forward Voltage Rank
- · LOT No: Lot Number

Reel Dimensions


Carrier Tape Dimensions: Loaded Quantity 2000 pcs Per Reel

Note: Tolerances unless mentioned ±0.1mm. Unit = mm

Moisture Resistant Packing Process



Note: Tolerances unless mentioned ±0.1mm. Unit = mm

Precautions for Use

1. Over-current-proof

1.1 Customer must apply resistors for protection, otherwise slight voltage shift will cause big current change (Burn out will happen).

2. Storage

- 2.1 Don't open moisture proof bag before the products are ready to use.
- 2.2 Before opening the package: The LEDs should be kept at 30℃ or less and 90%RH or less.
- 2.3 After opening the package: The LED's floor life is 72Hrs under 30℃ or less and 60% RH or less. If unused LEDs remain, it should be stored in moisture proof packages.
- 2.4 If the moisture absorbent material (silica gel) has faded away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions.baking treatment: $60\pm5^{\circ}$ C for 24 hours

3. Soldering Condition

- 3.1 Pb-free solder temperature profile
- 3.2 Reflow soldering should not be done more than two times.
- 3.3 When soldering, do not put stress on the LEDs during heating.
- 3.4 After soldering, do not warp the circuit board.

4. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than 350°C for 3 seconds within once in less

than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

5. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

Application Restrictions

High reliability applications such as military/aerospace, automotive safety/security systems, and medical equipment may require different product. If you have any concerns, please contact Everlight before using this product in your application. This specification guarantees the quality and performance of the product as an individual component. Do not use this product beyond the specification described in this document.

Revision History

Rev.	Modified date	File modified contents
1	2014/11/17	New Spec
2	2015/06/30	Approved
3	2016/01/28	Correction Description